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Introduction 

Breast cancer is currently the most commonly diagnosed 

cancer in women, accounting for a quarter of all cancer cas-

es [1]. A total of 2.3 million new cases of breast cancer were 

diagnosed in 2020, accounting for one in eight newly diag-

nosed cancers [2]. The incidence of breast cancer is rising 

not only in the United States and Europe but also in Asia [3]. 

With the development of screening using mammography 

and ultrasound, and the development of various treatment 

methods, the treatment results for breast cancer are becom-

ing more outstanding [4]. Among all breast cancer diagno-

ses, the proportion of early-stage breast cancers continues 
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The incidence of breast cancer is increasing worldwide. As cancer screening has become more widespread, the rate of early breast 
cancer detection has increased and treatment methods have changed. Partial mastectomy is performed more often than total mas-
tectomy for the surgical treatment of early breast cancer, and sentinel lymph node biopsy plays an important role. A high level of accu-
racy is necessary for the intraoperative examination of surgical margins and sentinel lymph nodes to identify malignancies. Therefore, 
several examination techniques, including Raman spectroscopy, that replace or supplement the currently used frozen-section meth-
ods are being studied. Raman spectroscopy has the ability to diagnose cancer in normal tissue by providing in real time a chemical 
fingerprint that can be used to differentiate between cells and tissues. Numerous studies have investigated the utilization of Raman 
spectroscopy to identify cancer in the margins of resected tissues and sentinel lymph nodes during breast cancer surgery, showing 
the potential of this technique for clinical applications. This article introduces and reviews the research on Raman spectroscopy for 
breast cancer surgery. 
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to increase. Accordingly, the surgical methods for breast 

cancer are constantly changing. Modified radical mastec-

tomy was the standard for surgical treatment of breast can-

cer. However, with the introduction of partial mastectomy 

accompanied by radiation, the surgical treatment of breast 

cancer has undergone great changes [5,6]. In addition, with 

the introduction of sentinel lymph node biopsy (SLNB) into 

breast cancer surgery by Giuliano et al. [7], many patients 

with early breast cancer skipped axillary lymphatic dissec-

tion, thereby reducing the incidence of lymphedema. Such 

changes in breast cancer surgery require higher levels of 

accuracy and safety. In the process of confirming the re-

section margin and sentinel lymph nodes by frozen section 
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examination during surgery, a certain false-negative rate is 

reported in the pathological examination [8,9]. If the frozen 

biopsy result is negative, but cancer cells are found in the 

final biopsy report, the patient may experience the incon-

venience of having to undergo reoperation to remove any 

cancer cells that may remain in the body. The reoperation 

rate has been reported up to 50% depending on the study 

[10-12]. It follows that optical technologies have been de-

veloped for accurate diagnosis of sentinel lymph node and 

tumor margins such as diffuse reflectance spectroscopy, 

fluorescence spectroscopy, and photoacoustic spectrosco-

py [13-18]. Especially Raman spectroscopy is an excellent 

technique for material analysis due to its high molecular 

specificity [19], various studies have been conducted on 

the evaluation of sentinel lymph node and tumor margin in 

breast cancer [20-24]. But Raman scattering has disadvan-

tages that are difficult to apply clinically, such as low signal-

to-noise ratio and exacerbated by fluorescence interference 

[25], and long measurement time [26]. Nonetheless, recent 

advances such as high-efficiency laser sources, low-noise 

detectors, effective filters, and high-efficiency optics have 

greatly improved this applicability [27,28]. 

Background of Raman spectroscopy 

1. Raman spectroscopy system 
Raman spectroscopy was first observed experimentally in 

1928 [29]; however, because of the rare occurrence of Ra-

man scattering, which only occurs with a probability of 1 in 

approximately 108, it was difficult to observe [30,31]. Recent 

advancements in technology have enabled real-time ob-

servation using Raman spectroscopy, leading to its wide-

spread application in the clinical field. Raman spectroscopy 

is a powerful technique for the spectroscopy of vibrations 

produced by the interacting energy in materials, including 

cells and tissues. It allows the identification and analysis 

of the molecular structure, symmetry, electronic environ-

ment, and composition of a material, providing a chemical 

fingerprint that can be used to distinguish between cells 

and tissues [32-37]. Diseases, particularly cancer, alter the 

chemical fingerprints of tissues. Raman spectroscopy has 

the potential to differentiate between diseased and normal 

tissues. However, it requires a large amount of trained refer-

ence data and an accurate analysis model [32,34]. 

To explain the Raman scattering phenomenon, it is nec-

essary to first describe Rayleigh scattering. Various interac-

tions, such as absorption, reflection, and scattering, occur 

when light interacts with a material. Scattering refers to the 

deviation of light from its original path and its propagation 

in different directions. Rayleigh scattering occurs when the 

energies of the incident light and light emitted in different 

directions are equal. This type of scattering is also known as 

elastic scattering, owing to its characteristic nature. How-

ever, there are cases in which the scattered light possesses 

more or less energy than the original energy. For example, 

a portion of the incident energy may be utilized for the vi-

brational motion of atoms or the rotational motion of mol-

ecules, whereas the remaining energy is scattered as light. 

In this scenario, only energy lower than the incident energy 

is emitted, resulting in the emission of light with relatively 

longer wavelengths compared to Rayleigh scattering. This 

process is referred to as Stokes Raman scattering. Con-

versely, when the material is already in a high-energy state 

upon receiving light, more energy is emitted than incident 

energy. Consequently, the wavelength of the scattered light 

shortens; this phenomenon is known as anti-Stokes Raman 

scattering (Fig. 1) [38]. 

2. Raman spectra 
The incident photons interact with molecules in the tissue. 

Rayleigh occurs when the energy of the scattered photon is 

equal to that of the incident photon. The rare occurrence of 

a difference in energy between a scattered photon and an 

incident photon is called inelastic scattering and is known 

as the Raman effect. Only one photon in 108 undergoes the 

Raman effect [30,39]. 

A laser is used to provide high-quality monochromatic 

light and induce Raman scattering. To collect light that 

reacts with the tissue, appropriate optics must be config-

ured in the optical path. Recent developments in Raman 

detectors include the use of highly sensitive detectors and 

gratings. A schematic of the Raman spectroscopy system is 

shown in Fig. 2. 

In general, Raman spectra have characteristic chemical 

fingerprints that depend on the wavelength of the inci-

dent laser, molecular composition, and bonding form. 

Raman spectroscopic techniques have been developed in 

several types. Spontaneous Raman spectroscopy, when 

used in combination with a fiber probe or microscope, is 

characterized by being label-free, noninvasive, and nonde-
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structive. Resonance Raman spectroscopy, which matches 

the excitation wavelength to the electron resonance of 

molecules, increases the signal-to-noise ratio by 103 to 105. 

Surface-enhanced Raman spectroscopy applied to rough 

metal surfaces results in a 106-fold increase in the signal-

to-noise ratio and has been applied to cell-based assays 

and immunoassays. Spatially offset Raman spectroscopy 

technology, which collects diffusely scattered photons, can 

acquire information even in relatively thick tissues and has 

been applied to cancer detection in breast tissue [30]. 

The Raman spectrum provides the fingerprint of a ma-

terial; however, it is not possible to directly interpret the 

composition of the material from this chemical fingerprint. 

A database of reference spectra is required to use Raman 

spectroscopy in the analysis of materials. A large number of 

Raman spectra have been published for this purpose [40-

42]. Also, simulations and deep learning continue to be 

studied [39,43]. Unlike single materials, human tissues are a 

complex assembly of various molecular structures. Raman 

spectra of protein structures in human tissues are continu-

ously being studied [44,45]. 

Raman spectroscopy of breast cancer 
surgery 

1. Frozen section analysis in breast cancer surgery 
Partial mastectomy combined with postoperative radia-

tion therapy has become the gold standard treatment for 

patients with early-stage breast cancer, offering equivalent 

survival and improved quality of life compared to patients 

undergoing total mastectomy [46,47]. Complete resection 

of tumors is essential for partial mastectomy to reduce the 

recurrence rate after surgical treatment [48,49]. During par-

tial mastectomy, the surgeon may request rapid pathologi-

cal information of marginal status and determine whether 

additional resection is required. SLNB is also important for 

the surgical treatment of early breast cancer. The surgeon 

checks the progress of the disease through SLNB during 

Fig. 1. Jablonski diagram illustrating the energy transition for Rayleigh and Raman scattering. In Raman scattering, energy transition is 
defined when there is an energy difference of hvR from Rayleigh scattering. This energy arises from the vibrations of atoms or the rota-
tional motion of molecules.
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surgery and makes a dicision of the surgical scope of the 

axillary region. As the rate of early breast cancer increases, 

the need for a method that can quickly confirm pathologi-

cal results during surgery has increased. Currently, frozen 

section analysis is the most frequently performed method 

for confirming the pathological results of intraoperative 

biopsies. When a surgeon sends a tissue that needs to be 

inspected during surgery to a pathologist, the tissue is an-

alyzed through frozen sectioning and notified of the result, 

which reduces the frequency of reoperations that occur af-

ter surgery [50,51]. However, This method has limitation in 

sensitivity. Studies analyzing marginal frozen sections ob-

tained from partial mastectomy have reported sensitivities 

of 77%–81% [52,53]. In SLNB, the sensitivity of macro-me-

tastasis and micro-metastasis was different. The sensitivity 

for diagnosis of macro-metastasis was over 90%, but the 

sensitivity for diagnosis of micro-metastasis was reported to 

be 30%–40% [8,54-56]. If the results of frozen section anal-

ysis confirmed during surgery and the final biopsy results 

confirmed after surgery are different, the patient may expe-

rience the inconvenience of having to repeat the operation, 

which leads to an increase in complications, hospitalization 

days, and medical expenses [57-60]. 

2. Raman spectroscopy of surgical margins 
In 2006, a study that implemented Raman spectroscopy of 

breast tissue in an in vivo environment was reported for 

the first time. Haka et al. [61] obtained and analyzed 31 

Raman spectra from nine patients who underwent partial 

mastectomy. In that study, cancer tissues were accurately 

distinguished from normal and benign tissues using Raman 

spectroscopy. These researchers later reported a negative 

predictive value of 99% using 129 tissue samples in a new 

prospective study [62]. However, to confirm the presence 

or absence of cancerous tissue on the surgical cut surface 

using Raman spectroscopy in actual clinical practice, an 

accurate location must be specified, and the single-point 

method using a probe causes sampling errors. To solve 

this problem, Zhang et al. [63] conducted a comparative 

study using Raman spectral mapping. A total of 53 sets of 

mapping data and 2,597 Raman spectra were analyzed and 

compared, and the data obtained using the mapping tech-

nology displayed excellent diagnostic performance. Raman 

microspectroscopy studies have also been reported. Raman 

microspectroscopy makes diagnosis without staining based 

on the morphological and biochemical contrast between 

normal and tumor tissue. Kong et al. [64] reported that 

using Raman microspectroscopy to detect invasive ductal 

carcinoma within breast tissue with 95.6% sensitivity and 

96.2% specificity. Zhang et al. [65] reported characteriza-

tion of biochemical properties and structural alterations of 

breast cancer tissues at various TNM stages and grades by 

Raman microspectroscopy. Early Raman microspectros-

copy studies had limitations in that the scanning method 

used to construct Raman spectral images for tumor diag-

nosis was very slow [66]. However, with the development of 

various technologies, such as the use of selective sampling 

based on integrated autofluorescence imaging, the possi-

bility of its clinical application as an intraoperative method 

has been demonstrated [64,67,68]. 

3. Raman spectroscopy of SLNB 
Raman spectroscopy is noninvasive and can provide de-

tailed chemical information about tissue, thereby making it 

a very suitable test to check the status of the sentinel lymph 

nodes in real time during surgery. In 2003, Smith et al. [69] 

Fig. 2. Monochromatic excitation light generated by a laser 
source passing through a narrow-band filter within a probe. After 
interacting with the sample, the laser light re-enters the probe. 
When the Raman operation is activated, the incident light is di-
rected to an optical system and transmitted to a spectrometer. The 
spectrometer’s grating separates the collected light, which is then 
detected and analyzed through software. A sample holder can be 
used to minimize ambient light noise.
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first identified axillary lymph nodes in breast cancer using 

Raman spectroscopy. After that, Horsnell et al. [70] reported 

a sensitivity of 81% and specificity of 97% using the method 

of examining 10 points in the lymph node. Unfortunately, 

studies using Raman spectroscopy as a diagnostic tool for 

sentinel lymph node evaluation have not yet been conduct-

ed. Most studies were limited to small sample sizes and 

were laboratory-based. However, recently, studies using 

new technologies, such as a tissue mapping protocol ob-

tained by analyzing the spectra of each cell [22] and studies 

using a nontoxic Raman nanoparticle tracer [21] have been 

reported, confirming the possibility that sentinel lymph 

node diagnosis through Raman spectroscopy can be used 

in clinical practice. 

Conclusions 

Research on Raman spectroscopy has been conducted in 

various fields, ranging from basic to clinical applications. 

The high sensitivity of Raman spectroscopy was previously 

regarded as a disadvantage that made it difficult to apply in 

clinical practice; however, these limitations are now being 

overcome by the incorporation of various technologies and 

the development of spectrum analysis. Studies analyzing 

Raman spectra to identify cancerous tissue at the surgical 

margin and lymph node during breast cancer surgery are 

ongoing, and the positive results of the studies show the 

possibility of supplementing the frozen section method. In 

the surgical treatment of breast cancer, if it becomes pos-

sible to distinguish malignant tissue from normal tissue in 

vivo using Raman spectroscopy, unnecessary surgical biop-

sies during surgery will be reduced. 
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